Hilger pure imaginary

From timescalewiki
Revision as of 20:02, 29 December 2015 by Tom (talk | contribs)
Jump to: navigation, search

Let $h>0$ be fixed. The Hilger pure imaginary numbers, $\mathring{\iota} \omega$, where $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$ is defined by the formula $$\mathring{\iota} \omega = \dfrac{e^{2\pi i \omega}-1}{h},$$ where $i=\sqrt{-1}$.

Properties

Proposition: If $z \in \mathbb{C}_h$, the Hilger complex plane, then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the Hilger circle.

Proof:

Theorem: Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then $$\left| \mathring{\iota} \omega \right|=\dfrac{4}{h^2} \sin^2 \left( \dfrac{\omega h}{2} \right).$$

Proof:

Theorem

The following formula holds: $$z = \mathrm{Re}_h(z) \oplus_h \mathring{\iota} \mathrm{Im}_h(z),$$ where $\mathrm{Re}_h$ denotes the Hilger real part of $z$, $\mathrm{Im}_h$ denotes the Hilger imaginary part of $z$, $\oplus_h$ denotes the circle plus operation, and $\mathring{\iota}$ denotes the Hilger pure imaginary.

Proof

References