Difference between revisions of "Gamma function"

From timescalewiki
Jump to: navigation, search
Line 5: Line 5:
 
and
 
and
 
$$f \boxminus_{\mu} g := \dfrac{(f-g)\mathrm{id}}{\mathrm{id} + g \mu}.$$
 
$$f \boxminus_{\mu} g := \dfrac{(f-g)\mathrm{id}}{\mathrm{id} + g \mu}.$$
With these definitions, we have the gamma operator
+
With these definitions, we have the gamma operator <sup>[[#tgfots|[pp.516]]]</sup>
 
$$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$
 
$$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$
  

Revision as of 02:46, 24 July 2014

We define $$p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s),$$ where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\cdot}$ denotes the time scale exponential. Define the operations $$f \boxplus_{\mu} g := f+g+\dfrac{1}{\mathrm{id}}fg\mu$$ and $$f \boxminus_{\mu} g := \dfrac{(f-g)\mathrm{id}}{\mathrm{id} + g \mu}.$$ With these definitions, we have the gamma operator [pp.516] $$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$

Properties of gamma functions

Convergence

Examples of gamma functions

References

<bibtex>

@inproceedings{

  title="The Gamma Function on Time Scales",
  author="Bohner, Martin and Karpuz, Başak",
  booktitle="Dynamics of Continuous, Discrete \& Impulsive Systems. Series A. Mathematical Analysis",
  volume="20",
  year="2013",
  pages="pp.507--522",
  url="http://online.watsci.org/abstract_pdf/2013v20/v20n4a-pdf/7.pdf"

} </bibtex>