# Difference between revisions of "Forward regressive function"

From timescalewiki

Line 1: | Line 1: | ||

Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ | Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ | ||

$$1+\mu(t)p(t)\neq 0.$$ | $$1+\mu(t)p(t)\neq 0.$$ | ||

+ | We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$. | ||

=See also= | =See also= |

## Revision as of 22:38, 10 February 2017

Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$ We call the set of forward regressive functions with domain $X$ and codomain $Y$ by $\mathcal{R}(X,Y)$.