Difference between revisions of "Expected value"

From timescalewiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathbb{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$
 
$$\mathbb{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$
 
where $C_f$ is the [[cumulant generating function]] of $f$.
 
where $C_f$ is the [[cumulant generating function]] of $f$.
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathbb{E}_{\mathbb{T}}(X^k)=\displaystyle\int_0^{\infty} k! h_k(t,0)f(t) \Delta t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]
 
[https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews]

Revision as of 16:40, 14 April 2015

Let $\mathbb{T}$ be a time scale. Let $X$ be a random variable with probability density function $f \colon \mathbb{T} \rightarrow \mathbb{R}$. The expected value of $X$ is given by $$\mathbb{E}_{\mathbb{T}}(X) = \dfrac{dC_f}{dz}(0),$$ where $C_f$ is the cumulant generating function of $f$.

Properties

Theorem: The following formula holds: $$\mathbb{E}_{\mathbb{T}}(X^k)=\displaystyle\int_0^{\infty} k! h_k(t,0)f(t) \Delta t.$$

Proof:

References

Probability theory on time scales and applications to finance and inequalities by Thomas Matthews