# Difference between revisions of "Euler-Cauchy logarithm"

From timescalewiki

Line 6: | Line 6: | ||

=See also= | =See also= | ||

[[Euler-Cauchy dynamic equation]]<br /> | [[Euler-Cauchy dynamic equation]]<br /> | ||

+ | [[Jackson logarithm]]<br /> | ||

+ | [[Mozyrska-Torres logarithm]]<br /> | ||

=References= | =References= | ||

*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ | *{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ |

## Revision as of 17:03, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$

# Properties

# See also

Euler-Cauchy dynamic equation

Jackson logarithm

Mozyrska-Torres logarithm

# References

- Martin Bohner:
*The logarithm on time scales*(2005)... (previous)... (next): $(2)$