# Difference between revisions of "Euler-Cauchy logarithm"

From timescalewiki

Line 8: | Line 8: | ||

=References= | =References= | ||

− | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ | + | *{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(2)$ |

## Revision as of 17:02, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$

# Properties

# See also

# References

- Martin Bohner:
*The logarithm on time scales*(2005)... (previous)... (next): $(2)$