# Difference between revisions of "Euler-Cauchy logarithm"

From timescalewiki

m (Tom moved page Cauchy-Euler logarithm to Euler-Cauchy logarithm over redirect) |
|||

Line 1: | Line 1: | ||

− | Let $\mathbb{T}$ be a [[time scale]]. | + | Let $\mathbb{T}$ be a [[time scale]] and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula |

− | $$ | + | $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$ |

− | + | ||

− | + | =Properties= | |

− | + | ||

− | + | =See also= | |

− | \ | + | [[Euler-Cauchy dynamic equation]]<br /> |

− | |||

− | |||

=References= | =References= | ||

− | + | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (2) |

## Revision as of 16:58, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. The Euler-Cauchy logarithm is defined by the formula $$L(t,s)=\displaystyle\int_{s}^t \dfrac{1}{\tau + 2\mu(\tau)} \Delta \tau.$$

# Properties

# See also

# References

Martin Bohner: *The logarithm on time scales* (2005)... (previous)... (next): (2)