Difference between revisions of "Derivative of Delta sine"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> The following formula holds: $$\sin_p^{\Del...")
 
Line 2: Line 2:
 
<strong>[[Derivative of Delta sine|Proposition]]:</strong> The following formula holds:
 
<strong>[[Derivative of Delta sine|Proposition]]:</strong> The following formula holds:
 
$$\sin_p^{\Delta}(t,t_0)=p(t)\cos_p(t,t_0),$$
 
$$\sin_p^{\Delta}(t,t_0)=p(t)\cos_p(t,t_0),$$
where $\sin_p$ denotes the [[Delta sine|$\Delta \sin_p$]] function and $\cos_p$ denotes the [[Delta cosine|$\Delta\cos_p$]] function.
+
where $\sin_p$ denotes the [[Delta sine|$\Delta$-$\sin_p$]] function and $\cos_p$ denotes the [[Delta cosine|$\Delta$-$\cos_p$]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> Compute
 
<strong>Proof:</strong> Compute

Revision as of 18:01, 21 March 2015

Proposition: The following formula holds: $$\sin_p^{\Delta}(t,t_0)=p(t)\cos_p(t,t_0),$$ where $\sin_p$ denotes the $\Delta$-$\sin_p$ function and $\cos_p$ denotes the $\Delta$-$\cos_p$ function.

Proof: Compute $$\begin{array}{ll} \sin^{\Delta}_p(t,t_0) &= \dfrac{1}{2i} \dfrac{\Delta}{\Delta t} \left( e_{ip}(t,t_0) - e_{-ip}(t,t_0) \right) \\ &= \dfrac{ip}{2i} ( e_{ip}(t,t_0) + e_{-ip}(t,t_0) ) \\ &= \dfrac{1}{2} (e_{ip}(t,t_0)+e_{-ip}(t,t_0)) \\ &= p\cos_p(t,t_0), \end{array}$$ as was to be shown. █