Difference between revisions of "Delta sinh"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $p$ and $-\mu p^2$ be [[regressive function|regressive functions]]. Then the $\Delta$ hyperbolic sine function is defined by
 
Let $p$ and $-\mu p^2$ be [[regressive function|regressive functions]]. Then the $\Delta$ hyperbolic sine function is defined by
 
$$\sinh_p(t,s) = \dfrac{e_p(t,s)-e_{-p}(t,s)}{2}.$$
 
$$\sinh_p(t,s) = \dfrac{e_p(t,s)-e_{-p}(t,s)}{2}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Integerdeltasinh,a=0.6,s=0plot.png|Graph of $\sinh_{0.6}(t,0;\mathbb{Z})$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 08:02, 1 June 2016

Let $p$ and $-\mu p^2$ be regressive functions. Then the $\Delta$ hyperbolic sine function is defined by $$\sinh_p(t,s) = \dfrac{e_p(t,s)-e_{-p}(t,s)}{2}.$$

Properties

Theorem

Let $p\in$ $C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\sinh^{\Delta}_p = p\cosh_p,$$ where $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function and $\cosh_p$ denotes the $\Delta$-$\cosh_p$.

Proof

References

Theorem

The following formula holds: $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function, $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function, and $e_p$ denotes the $\Delta$-$e_p$ function.

Proof

References

Theorem

Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is $$y^{\Delta \Delta}-\gamma^2 y= 0$$ is given by $$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$

Proof

References

Relation to other functions

Theorem

Let $p\in C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\cosh^{\Delta}_p = p\sinh_p,$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function and $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function.

Proof

References

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$