Difference between revisions of "Delta mean value theorem"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be pre-differentiable with $D$. Then $|f^{\Delta}(t)| \leq g^{\Delt...")
 
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a [[time scale]] and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be [[pre-differentiable]] with $D$. Then $|f^{\Delta}(t)| \leq g^{\Delta}(t)$ for all $t \in \mathbb{T}$ implies
+
Let $\mathbb{T}$ be a [[time scale]] and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be [[pre-differentiable]] with $D$. If for all $t \in \mathbb{T}$, $|f^{\Delta}(t)| \leq g^{\Delta}(t)$, where $f^{\Delta}$ denotes [[delta derivative]], then
 
$$|f(s)-f(r)| \leq g(s)-g(r)$$
 
$$|f(s)-f(r)| \leq g(s)-g(r)$$
 
for all $r,s \in \mathbb{T}$ with $r \leq s$.
 
for all $r,s \in \mathbb{T}$ with $r \leq s$.

Latest revision as of 00:07, 5 January 2017

Theorem

Let $\mathbb{T}$ be a time scale and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be pre-differentiable with $D$. If for all $t \in \mathbb{T}$, $|f^{\Delta}(t)| \leq g^{\Delta}(t)$, where $f^{\Delta}$ denotes delta derivative, then $$|f(s)-f(r)| \leq g(s)-g(r)$$ for all $r,s \in \mathbb{T}$ with $r \leq s$.

Proof

References