# Difference between revisions of "Delta exponential dynamic equation"

From timescalewiki

(→See also) |
|||

Line 9: | Line 9: | ||

=References= | =References= | ||

* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$ | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$ | ||

+ | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(1)$ | ||

[[Category:Definition]] | [[Category:Definition]] |

## Revision as of 16:59, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \in$ $\mathcal{R}$$(\mathbb{T},\mathbb{C})$. The following dynamic equation is called the exponential dynamic equation: $$y^{\Delta}(t)=p(t)y(t).$$

# Properties

# See also

# References

- Martin Bohner and Allan Peterson:
*Dynamic Equations on Time Scales*(2001)... (previous)... (next): $(2.17)$

Martin Bohner: *The logarithm on time scales* (2005)... **(previous)**... (next): $(1)$