Difference between revisions of "Delta derivative"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]]. Define $\mathbb{T}^{\kappa} := \mathbb{T} \setminus \sup \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. We define the delta-derivative of $f$ to be the function $f^{\Delta} \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{R}$ by the formula
+
Let $\mathbb{T}$ be a [[time_scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}^{\kappa}$. We define the $\Delta$-derivative of $f$ at $t$ to be the number $f^{\Delta}(t)$ (if it exists) so that there exists a $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap \mathbb{T}$,
$$f^{\Delta}(t) := \left\{ \begin{array}{ll}
+
$$|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]| \leq \epsilon |\sigma(t)-s|.$$
\dfrac{f(\sigma(t))-f(t)}{\mu(t)} &\colon \mu(t) > 0 \\
 
\displaystyle\lim_{s \rightarrow t} \dfrac{f(s) - f(t)}{s-t} &\colon \mu(t) = 0.
 
\end{array} \right.$$
 
 
 
An equivalent definition to this defines $f^{\Delta}(t)$ to be the number (if it exists) with the property that for any $\epsilon > 0$ there exists $\delta >0$ such that for all $s \in (t-\delta,t+\delta)\cap \mathbb{T}$,
 
$$|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]| \leq \epsilon |\sigma(t)-s|$$
 
  
 
==Properties of the $\Delta$-derivative==
 
==Properties of the $\Delta$-derivative==

Revision as of 20:57, 19 May 2014

Let $\mathbb{T}$ be a time_scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}^{\kappa}$. We define the $\Delta$-derivative of $f$ at $t$ to be the number $f^{\Delta}(t)$ (if it exists) so that there exists a $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap \mathbb{T}$, $$|[f(\sigma(t))-f(s)]-f^{\Delta}(t)[\sigma(t)-s]| \leq \epsilon |\sigma(t)-s|.$$

Properties of the $\Delta$-derivative

  • $f(\sigma(t))=f(t)+\mu(t)f^{\Delta}(t)$
  • Sum rule:

$$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t)$$

  • Constant rule:if $\alpha$ is constant with respect to $t$, then

$$(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t)$$

  • Product Rule I

$$(fg)^{\Delta}(t)=f^{\Delta}(t)g(t)+f(\sigma(t))g^{\Delta}(t))$$

  • Product Rule II

$$(fg)^{\Delta}(t) = f(t)g^{\Delta}(t)+ f^{\Delta}(t)g(\sigma(t))$$

  • Quotient Rule:

$$\left( \dfrac{f}{g} \right)^{\Delta}(t) = \dfrac{f^{\Delta}(t)g(t)-f(t)g^{\Delta}(t)}{g(t)g(\sigma(t))}$$

Interesting Examples

The jump operator $\sigma$ is not $\Delta$-differentiable on all time scales. Consider $\mathbb{T}=