Difference between revisions of "Delta cosine"

From timescalewiki
Jump to: navigation, search
(Examples)
Line 15: Line 15:
 
|-
 
|-
 
|$\mathbb{T}$
 
|$\mathbb{T}$
|
+
|$\cos_p(t,s)=  $
 
|-
 
|-
 
|[[Real_numbers | $\mathbb{R}$]]
 
|[[Real_numbers | $\mathbb{R}$]]
|$\cos_p(t,s)=  $
+
|
 
|-
 
|-
 
|[[Integers | $\mathbb{Z}$]]
 
|[[Integers | $\mathbb{Z}$]]
|$\cos_p(t,s) = $
+
|
 
|-
 
|-
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
| $\cos_p(t,s) = $
+
|  
 
|-
 
|-
 
| [[Square_integers | $\mathbb{Z}^2$]]
 
| [[Square_integers | $\mathbb{Z}^2$]]
| $\cos_p(t,s) = $
+
|  
 
|-
 
|-
 
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
 
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
| $\cos_p(t,s) = $
+
|  
 
|-
 
|-
 
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
 
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
| $\cos_p(t,s) =$
+
|  
 
|-
 
|-
 
|[[Harmonic_numbers | $\mathbb{H}$]]
 
|[[Harmonic_numbers | $\mathbb{H}$]]
|$\cos_p(t,s) = $
+
|
 
|}
 
|}
  
 
{{:Delta special functions footer}}
 
{{:Delta special functions footer}}

Revision as of 18:21, 21 March 2015

Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.

Properties

Theorem

The following formula holds: $$\cos_p^{\Delta}(t,t_0)=-p(t)\sin_p(t,t_0),$$ where $\cos^{\Delta}_p$ denotes the delta derivative of the delta cosine function and $\sin_p$ denotes the delta sine function.

Proof

Compute $$\begin{array}{ll} \cos_p^{\Delta}(t,t_0) &= \dfrac{1}{2} \dfrac{\Delta}{\Delta t} \Big(e_{ip}(t,t_0) + e_{-ip}(t,t_0) \Big) \\ &= \dfrac{ip}{2} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\dfrac{p}{2i} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\sin_p(t,t_0), \end{array}$$ as was to be shown. █

References

Theorem

The following formula holds: $$\cos_p^2(t,t_0)+\sin_p^2(t,t_0)=e_{\mu p^2}(t,t_0),$$ where $\cos_p$ denotes the $\Delta$-$\cos_p$ function and $\sin_p$ denotes the $\Delta$-$\sin_p$ function.

Proof

References

Relation to other special functions

Theorem

The following formula holds: $$\sin_p^{\Delta}(t,t_0)=p(t)\cos_p(t,t_0),$$ where $\sin_p$ denotes the $\Delta$-$\sin_p$ function and $\cos_p$ denotes the $\Delta$-$\cos_p$ function.

Proof

Compute $$\begin{array}{ll} \sin^{\Delta}_p(t,t_0) &= \dfrac{1}{2i} \dfrac{\Delta}{\Delta t} \left( e_{ip}(t,t_0) - e_{-ip}(t,t_0) \right) \\ &= \dfrac{ip}{2i} ( e_{ip}(t,t_0) + e_{-ip}(t,t_0) ) \\ &= \dfrac{1}{2} (e_{ip}(t,t_0)+e_{-ip}(t,t_0)) \\ &= p\cos_p(t,t_0), \end{array}$$ as was to be shown. █

References

Examples

Time Scale Cosine Functions
$\mathbb{T}$ $\cos_p(t,s)= $
$\mathbb{R}$
$\mathbb{Z}$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$