Difference between revisions of "Delta Tschebycheff inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 +
==Theorem==
 
Let $\mathbb{T}$ be a [[time scale]] and let $\epsilon > 0$. Then
 
Let $\mathbb{T}$ be a [[time scale]] and let $\epsilon > 0$. Then
 
$$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$
 
$$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$
 
where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$.
 
where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$.
 +
 +
==Proof==
 +
 +
==References==
  
 
{{:Delta inequalities footer}}
 
{{:Delta inequalities footer}}
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 00:38, 15 September 2016

Theorem

Let $\mathbb{T}$ be a time scale and let $\epsilon > 0$. Then $$\dfrac{\mathbb{V}ar_{\mathbb{T}}(X) - \mathbb{E}_{\mathbb{T}}(2H(X))}{\epsilon^2} \geq P((X-\mathbb{E}_{\mathbb{T}}(X))^2 \geq \epsilon^2),$$ where the density function of $H(X)$ is $h_2(t,0)-\dfrac{t^2}{2}$.

Proof

References

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger