# Difference between revisions of "Delta Jensen inequality"

From timescalewiki

Line 10: | Line 10: | ||

{{:Delta inequalities footer}} | {{:Delta inequalities footer}} | ||

+ | |||

+ | [[Category:Theorem]] | ||

+ | [[Category:Unproven]] |

## Latest revision as of 00:36, 15 September 2016

## Theorem

Let $a,b \in \mathbb{T}$ and $c,d \in \mathbb{R}$. Suppose $g \colon [a,b]\cap \mathbb{T} \rightarrow (c,d)$ is rd-continuous and $F \colon (c,d) \rightarrow \mathbb{R}$ is convex. Then $$F \left(\dfrac{\displaystyle\int_a^b g(t) \Delta t}{b-a}\right) \leq \dfrac{\displaystyle\int_a^b F(g(t))\Delta t}{b-a}.$$

## Proof

## References

Ravi Agarwal, Martin Bohner and Allan Peterson: *Inequalities on Time Scales: A Survey* (2001)... (previous)... (next): Theorem 4.1

## $\Delta$-Inequalities

Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen |
Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |