# Difference between revisions of "Cylinder transformation"

From timescalewiki

(Created page with "Let $\mathbb{T}$ be a time scale. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the Hilger com...") |
|||

Line 2: | Line 2: | ||

$$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$ | $$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$ | ||

where $\mathrm{Log}$ denotes the principal logarithm. | where $\mathrm{Log}$ denotes the principal logarithm. | ||

+ | |||

+ | =See also= | ||

+ | [[Delta exponential]]<br /> | ||

+ | |||

+ | [[Category:Definition]] |

## Revision as of 02:15, 2 December 2016

Let $\mathbb{T}$ be a time scale. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the Hilger complex plane and $\mathbb{Z}_h=\left\{ z \in \mathbb{C} \colon -\dfrac{\pi}{h} < \mathrm{Im}(z) \leq \dfrac{\pi}{h} \right\}$, and is defined by the formula $$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$ where $\mathrm{Log}$ denotes the principal logarithm.