Difference between revisions of "Continuous"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $X \subset \mathbb{R}$ and let $t \in X%. We say that a function $f \colon X \rightarrow \mathbb{R}$ is continuous at $t$ if for every $\epsilon >0$ there exists $\delta >...")
 
Line 1: Line 1:
Let $X \subset \mathbb{R}$ and let $t \in X%. We say that a function $f \colon X \rightarrow \mathbb{R}$ is continuous at $t$ if for every $\epsilon >0$ there exists $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap X$, $|f(t)-f(s)|<\epsilon$.
+
Let $X \subset \mathbb{R}$ and let $t \in X$. We say that a function $f \colon X \rightarrow \mathbb{R}$ is continuous at $t$ if for every $\epsilon >0$ there exists $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap X$, $|f(t)-f(s)|<\epsilon$.
 +
 
 +
Let $\mathbb{T}$ be a time scale. We say that a function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous if it is continuous at right-dense points of $\mathbb{T}$ and its left-sided limits exist at left-dense points of $\mathbb{T}$.

Revision as of 21:02, 19 May 2014

Let $X \subset \mathbb{R}$ and let $t \in X$. We say that a function $f \colon X \rightarrow \mathbb{R}$ is continuous at $t$ if for every $\epsilon >0$ there exists $\delta >0$ so that for all $s \in (t-\delta,t+\delta) \bigcap X$, $|f(t)-f(s)|<\epsilon$.

Let $\mathbb{T}$ be a time scale. We say that a function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous if it is continuous at right-dense points of $\mathbb{T}$ and its left-sided limits exist at left-dense points of $\mathbb{T}$.