# Difference between revisions of "Bohner logarithm"

From timescalewiki

Line 4: | Line 4: | ||

=Properties= | =Properties= | ||

[[Bohner logarithm sub a product]]<br /> | [[Bohner logarithm sub a product]]<br /> | ||

+ | |||

+ | =See also= | ||

+ | [[Euler-Cauchy logarithm]]<br /> | ||

+ | [[Jackson logarithm]]<br /> | ||

+ | [[Mozyrska-Torres logarithm]]<br /> | ||

=References= | =References= | ||

{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3) | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3) |

## Revision as of 23:03, 10 February 2017

Let $\mathbb{T}$ be a time scale and let $p \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$

# Properties

Bohner logarithm sub a product

# See also

Euler-Cauchy logarithm

Jackson logarithm

Mozyrska-Torres logarithm

# References

Martin Bohner: *The logarithm on time scales* (2005)... (previous)... (next): (3)