# Difference between revisions of "Bilateral Laplace transform"

From timescalewiki

Line 4: | Line 4: | ||

=References= | =References= | ||

− | + | *{{PaperReference|Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series|2009|John M. Davis|author2=Ian A. Gravagne|author3=Robert J. Marks II|prev=findme|next=findme}}: Definition $1.1$, $(1.1)$ |

## Revision as of 17:34, 7 July 2017

Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$ This integral is clearly a generalization of the Laplace transform.