# Difference between revisions of "Backward jump"

From timescalewiki

(Created page with "Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \...") |
|||

Line 1: | Line 1: | ||

Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | ||

$$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$ | $$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$ | ||

+ | |||

+ | =References= | ||

+ | * {{PaperReference|Functional series on time scales|2008|Dorota Mozyrska|author2=Ewa Pawluszewicz|prev=Backward jump|next=Forward graininess}} |

## Revision as of 14:46, 21 October 2017

Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$

# References

- Dorota Mozyrska and Ewa Pawluszewicz:
*Functional series on time scales*(2008)...**(previous)**... (next)