# Difference between revisions of "Backward graininess"

From timescalewiki

(Created page with "Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by $$\nu(t) = t-\rho(t).$$") |
|||

Line 1: | Line 1: | ||

Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by | Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by | ||

− | $$\nu(t) = t-\rho(t) | + | $$\nu(t) = t-\rho(t),$$ |

+ | where $\rho$ denotes the [[backward graininess]]. |

## Latest revision as of 06:34, 23 December 2016

Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by
$$\nu(t) = t-\rho(t),$$
where $\rho$ denotes the **backward graininess**.