MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "query": {
        "pages": [
            {
                "ns": 0,
                "title": "API",
                "missing": ""
            },
            {
                "pageid": 1,
                "ns": 0,
                "title": "Main Page",
                "revisions": [
                    {
                        "user": "Tom",
                        "timestamp": "2023-02-06T01:55:48Z",
                        "comment": "",
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "This wiki is a resource for <strong>time scale calculus</strong>. Time scale calculus is a unification and extension of differential and difference calculus in which one does calculus upon a set $\\mathbb{T}$ of real numbers called a [[time scale]]. When [[Real_numbers | $\\mathbb{T}=\\mathbb{R}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Differential_calculus differential calculus], when [[Multiples_of_integers | $\\mathbb{T}=\\mathbb{Z}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Difference_calculus difference calculus], and when [[Quantum q greater than 1 | $\\mathbb{T}=\\{1,q,q^2,\\ldots\\}, q>1$]], the resulting theory becomes the [https://en.wikipedia.org/wiki/Quantum_calculus $q$-calculus]. Time scales also include any closed subset of $\\mathbb{R}$, so more exotic sets such as the [http://en.wikipedia.org/wiki/Cantor_set Cantor set] are also subsumed in the theory.\n\nA result proven in time scale calculus implies the result for all choices of $\\mathbb{T}$ so a result in time scale calculus immediately implies the result in differential calculus, the same result in difference calculus, the same result in $q$-calculus, the same result in calculus on the Cantor set, and countless others. For an example of this phenomenon, see the familiar properties of the [[delta_derivative | $\\Delta$-derivative]] to classical differentiation or to taking a forward difference.\n\nSee the Python library [https://github.com/tomcuchta/timescalecalculus timescalecalculus] on GitHub and its [[timescalecalculus python library documentation|documentation]].\n\n<b><u>Registration</u></b>\nDue to a resurgence of automated spam bots, account registration and anonymous editing is currently disabled. Please contact Tom Cuchta (tomcuchta@gmail.com) to gain access to edit the wiki.\n\n=Time scales calculus=\n<center>{{:Time scales footer}}</center>\n<center>{{:Delta special functions footer}}</center>\n<center>{{:Hilger complex plane footer}}</center>\n{{:Delta inequalities footer}}\n\n[[Bilateral Laplace transform]]<br />\n[[Unilateral Laplace transform]]<br />\n[[Cauchy function]]<br />\n[[Chain rule]]<br />\n[[Unilateral convolution]]<br />\n[[Dense point]]<br />\n[[Disconjugate]]<br />\n[[Dynamic equation]]<br />\n[[Forward circle minus]]<br />\n[[Backward circle minus]]<br />\n[[Forward circle plus]]<br />\n[[Backward circle plus]]<br />\n[[Convergence of time scales]]<br />\n[[Dilation of time scales]]<br />\n[[Duality of delta and nabla | Duality of $\\Delta$ and $\\nabla$]]<br />\n[[Fractional calculus]]<br />\n[[Frequency roots]]<br />\n[[Generalized square]]<br />\n[[Generalized zero]]<br />\n[[Induction on time scales]]<br />\n[[L'Hospital's Rule]]<br />\n[[First mean value theorem]]<br />\n[[Pre-differentiable]]<br />\n[[Marks-Gravagne-Davis Fourier transform]]<br />\n[[Cuchta-Georgiev Fourier transform]]<br />\n[[rd-continuous]]<br />\n[[Forward regressive function]]<br />\n[[Regulated function]]<br />\n[[Riccati equation]]<br />\n[[Scattered point]]<br />\n[[Self-adjoint]]<br />\n[[Shifting problem]]<br />\n[[Variation of parameters]]<br />\n[[Wronskian]]<br />\n\n==$\\Delta$-calculus==\n[[delta_derivative | $\\Delta$-derivative]]<br />\n[[Delta heat equation | $\\Delta$ heat equation]]<br />\n[[delta_integral | $\\Delta$-integral]]<br />\n[[Delta Taylor's formula|$\\Delta$-Taylor's formula]]<br />\n[[Delta wave equation | $\\Delta$ wave equation]]<br />\n[[Directional Delta Derivative | Directional $\\Delta$ derivative]]<br />\n[[Partial Delta Derivative | Partial $\\Delta$ derivative]]<br />\n[[Partial Delta Dynamic Equations | Partial $\\Delta$ dynamic equations]]<br />\n\n==$\\nabla$-calculus==\n[[nabla_derivative | $\\nabla$-derivative]]<br />\n[[nabla integral | $\\nabla$-integral]]<br />\n\n==$\\Diamond_{\\alpha}$-calculus==\n[[diamond alpha derivative | $\\Diamond_{\\alpha}$-derivative]]<br />\n[[diamond alpha holder inequality | $\\Diamond_{\\alpha}$-H\u00f6lder inequality ]]<br />\n[[diamond alpha Jensen's inequality | $\\Diamond_{\\alpha}$-Jensen's inequality]]<br />\n[[diamond alpha Minkowski's inequality | $\\Diamond_{\\alpha}$-Minkowski's inequality]]<br />\n[[diamond integral | $\\Diamond$-integral]]<br />\n\n==Probability Theory==\n*[[Cumulant generating function]]\n*[[Cumulative distribution function]]\n*[[Probability density function]]\n*[[Joint time scales probability density function]]\n*[[Moment generating function]]\n*[[Expected value]]\n*[[Variance]]\n\n{{:Examples of time scales}}\n\n=Special functions on time scales=\n[[Delta cpq|$\\mathrm{c}_{pq}$]]<br />\n[[Delta chpq|$\\mathrm{ch}_{pq}$]]<br />\n[[Delta spq|$\\mathrm{s}_{pq}$]]<br />\n[[Delta shpq|$\\mathrm{sh}_{pq}$]]<br />\n[[Gamma function]]<br />\n[[Euler-Cauchy logarithm]]<br />\n[[Bohner logarithm]]<br />\n[[Jackson logarithm]]<br />\n[[Mozyrska-Torres logarithm]]<br />\n[[gaussian_bell | Gaussian bell]]<br />\n[[Uniform distribution]]<br />\n[[Exponential distribution]]<br />\n[[Gamma distribution]]<br />\n\n\n==$\\nabla$-calculus==\n[[Nabla cosine | $\\nabla \\widehat{\\cos}_p$]]<br />\n[[Nabla cosh | $\\nabla \\widehat{\\cosh}_p$]]<br />\n[[Nabla exponential | $\\nabla \\widehat{\\exp}$]]<br />\n[[Nabla hk|$\\nabla \\hat{h}_k$]]<br />\n[[Nabla gk|$\\nabla \\hat{g}_k$]]<br />\n[[Nabla sine | $\\nabla \\widehat{\\sin}_p$]]<br />\n[[Nabla sinh | $\\nabla \\widehat{\\sinh}_p$]]<br />"
                    }
                ]
            }
        ]
    }
}