MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "gapcontinue": "Regressive_functions_form_an_abelian_group_under_circle_plus",
        "continue": "gapcontinue||"
    },
    "query": {
        "pages": {
            "6": {
                "pageid": 6,
                "ns": 0,
                "title": "Real numbers",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "The set $\\mathbb{R}$ of real numbers is a [[time scale]]. In this time scale, all derivatives reduce to the classical [https://en.wikipedia.org/wiki/Derivative derivative] and the integrals reduce to the classical [https://en.wikipedia.org/wiki/Integral integral].\n\n{| class=\"wikitable\"\n|+$\\mathbb{T}=\\mathbb{R}$\n|-\n|[[Forward jump]]:\n|$\\sigma(t)=t$\n|[[Derivation of forward jump for T=R|derivation]]\n|-\n|[[Forward graininess]]:\n|$\\mu(t)=0$\n|[[Derivation of forward graininess for T=R|derivation]]\n|-\n|[[Backward jump]]:\n|$\\rho(t)=t$\n|[[Derivation of backward jump for T=R|derivation]]\n|-\n|[[Backward graininess]]:\n|$\\nu(t)=0$\n|[[Derivation of backward graininess for T=R|derivation]]\n|-\n|[[Delta derivative | $\\Delta$-derivative]]\n|$f^{\\Delta}(t)=\\displaystyle\\lim_{h\\rightarrow 0} \\dfrac{f(t+h)-f(t)}{h}=f'(t)$\n|[[Derivation of delta derivative for T=R|derivation]]\n|-\n|[[Nabla derivative | $\\nabla$-derivative]]\n|$f^{\\nabla}(t) =\\displaystyle\\lim_{h \\rightarrow 0} \\dfrac{f(t)-f(t-h)}{h}= f'(t)$\n|[[Derivation of nabla derivative for T=R|derivation]]\n|-\n|[[Delta integral | $\\Delta$-integral]]\n|$\\displaystyle\\int_s^t f(\\tau) \\Delta \\tau = \\int_s^t f(\\tau) d\\tau$\n|[[Derivation of delta integral for T=R|derivation]]\n|-\n|[[Nabla derivative | $\\nabla$-derivative]]\n|$\\displaystyle\\int_s^t f(\\tau) \\nabla \\tau = \\int_s^t f(\\tau) d\\tau$\n|[[Derivation of nabla integral for T=R|derivation]]\n|-\n|[[Delta hk|$h_k(t,s)$]]\n|$h_k(t,s)=\\dfrac{(t-s)^k}{k!}$\n|[[Derivation of delta hk for T=R|derivation]]\n|-\n|[[Nabla hk|$\\hat{h}_k(t,s)$]]\n|$\\hat{h}_k(t,s)=\\dfrac{(t-s)^k}{k!}$\n|[[Derivation of nabla hk for T=R|derivation]]\n|-\n|[[Delta gk|$g_k(t,s)$]]\n|$g_k(t,s)=\\dfrac{(t-s)^k}{k!}$\n|[[Derivation of delta gk for T=R|derivation]]\n|-\n|[[Nabla gk|$\\hat{g}_k(t,s)$]]\n|$\\hat{g}_k(t,s)=\\dfrac{(t-s)^k}{k!}$\n|[[Derivation of nabla gk for T=R|derivation]]\n|-\n|[[Delta exponential | $e_p(t,s)$]] \n|$e_p(t,s)=\\exp \\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of delta exponential T=R|derivation]]\n|-\n|[[Nabla exponential | $\\hat{e}_p(t,s)$]]\n|$\\hat{e}_p(t,s)=\\exp \\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of nabla exponential T=R|derivation]]\n|-\n|[[Gaussian bell]]\n|$\\mathbf{E}(t)=e^{-\\frac{t^2}{2}}$\n|[[Derivation of Gaussian bell for T=R|derivation]]\n|-\n|[[Delta sine | $\\mathrm{sin}_p(t,s)=$]]\n|$\\sin_p(t,s)=\\sin\\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of delta sin sub p for T=R|derivation]]\n|-\n|$\\mathrm{\\sin}_1(t,s)$\n|$\\sin_1(t,s)=\\sin(t-s)$\n|[[Derivation of delta sin sub 1 for T=R|derivation]]\n|-\n|[[Nabla sine|$\\widehat{\\sin}_p(t,s)$]]\n|$\\widehat{\\sin}_p(t,s)=\\sin\\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of nabla sine sub p for T=R|derivation]]\n|-\n|[[Delta cosine|$\\mathrm{\\cos}_p(t,s)$]]\n|$\\cos_p(t,s)=\\cos \\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of delta cos sub p for T=R|derivation]]\n|-\n|$\\mathrm{\\cos}_1(t,s)$\n|$\\cos_1(t,s)=\\cos(t-s)$\n|[[Derivation of delta cos sub 1 for T=R|derivation]]\n|-\n|[[Nabla cosine|$\\widehat{\\cos}_p(t,s)$]]\n|$\\widehat{\\cos}_p(t,s)=\\cos \\left( \\displaystyle\\int_s^t p(\\tau) d\\tau \\right)$\n|[[Derivation of nabla cos sub 1 for T=R|derivation]]\n|-\n|[[Delta sinh|$\\sinh_p(t,s)$]]\n|$\\sinh_p(t,s)=$\n|[[Derivation of delta sinh sub p for T=R|derivation]]\n|-\n|[[Nabla sinh|$\\widehat{\\sinh}_p(t,s)$]]\n|$\\widehat{\\sinh}_p(t,s)=$\n|[[Derivation of nabla sinh sub p for T=R|derivation]]\n|-\n|[[Delta cosh|$\\cosh_p(t,s)$]]\n|$\\cosh_p(t,s)=$\n|[[Derivation of delta cosh sub p for T=R|derivation]]\n|-\n|[[Nabla cosh|$\\widehat{\\cosh}_p(t,s)$]]\n|$\\widehat{\\cos}_p(t,s)=$\n|[[Derivation of nabla cosh sub p for T=R|derivation]]\n|-\n|[[Gamma function]]\n|$\\Gamma_{\\mathbb{R}}(x,s)=\\displaystyle\\int_0^{\\infty} \\left( \\dfrac{\\tau}{s} \\right)^{x-1}e^{-\\tau} d\\tau$\n|[[Derivation of gamma function for T=R|derivation]]\n|-\n|[[Euler-Cauchy logarithm]]\n|$L(t,s)=$\n|[[Derivation of Euler-Cauchy logarithm for T=R|derivation]]\n|-\n|[[Bohner logarithm]]\n|$L_p(t,s)=\\log\\left(\\dfrac{p(t)}{p(s)}\\right)$\n|[[Derivation of the Bohner logarithm for T=R|derivation]]\n|-\n|[[Jackson logarithm]]\n|$\\log_{\\mathbb{T}} g(t)=$\n|[[Derivation of the Jackson logarithm for T=R|derivation]]\n|-\n|[[Mozyrska-Torres logarithm]]\n|$L_{\\mathbb{T}}(t)=$\n|[[Derivation of the Mozyrska-Torres logarithm for T=R|derivation]]\n|-\n|[[Laplace transform]]\n|$\\mathscr{L}_{\\mathbb{R}}\\{f\\}(z;s)=\\displaystyle\\int_0^{\\infty} f(\\tau) e^{-z\\tau} d\\tau$\n|[[Derivation of Laplace transform for T=R|derivation]]\n|-\n|[[Hilger circle]] \n|\n|[[Derivation of Hilger circle for T=R|derivation]]\n|-\n|}\n\n=References=\n*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=|next=Multiples of integers}}: Section 2.1(a)\n* {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Time scale|next=Quantum q greater than 1}}: Appendix\n\n<center>{{:Time scales footer}}</center>"
                    }
                ]
            },
            "228": {
                "pageid": 228,
                "ns": 0,
                "title": "Reciprocal of delta exponential",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "==Theorem==\nLet $\\mathbb{T}$ be a [[time scale]], let $t,s \\in \\mathbb{T}$, and let $p \\in \\mathcal{R}(\\mathbb{T},\\mathbb{C})$ be a [[regressive function]]. The following formula holds:\n$$\\dfrac{1}{e_p(t,s;\\mathbb{T})}=e_{\\ominus p}(s,t;\\mathbb{T}),$$\nwhere $e_p$ denotes the [[delta exponential]] and $\\ominus$ denotes [[circle minus]].\n\n==Proof==\n\n==References==\n\n[[Category:Theorem]]\n[[Category:Unproven]]"
                    }
                ]
            }
        }
    }
}